Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Nature ; 618(7965): 590-597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258672

RESUMEN

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/química
2.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673431

RESUMEN

In this study, we have introduced newly synthesized substituted benzothiazole based berberine derivatives that have been analyzed for their in vitro and in silico biological properties. The activity towards various kinds of influenza virus strains by employing the cytopathic effect (CPE) and sulforhodamine B (SRB) assay. Several berberine-benzothiazole derivatives (BBDs), such as BBD1, BBD3, BBD4, BBD5, BBD7, and BBD11, demonstrated interesting anti-influenza virus activity on influenza A viruses (A/PR/8/34, A/Vic/3/75) and influenza B viral (B/Lee/40, and B/Maryland/1/59) strain, respectively. Furthermore, by testing neuraminidase activity (NA) with the neuraminidase assay kit, it was identified that BBD7 has potent neuraminidase activity. The molecular docking analysis further suggests that the BBD1-BBD14 compounds' antiviral activity may be because of interaction with residues of NA, and the same as in oseltamivir.


Asunto(s)
Benzotiazoles/farmacología , Berberina/farmacología , Simulación del Acoplamiento Molecular , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Benzotiazoles/uso terapéutico , Berberina/análogos & derivados , Berberina/uso terapéutico , Línea Celular , Efecto Citopatogénico Viral , Perros , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Infecciones por Orthomyxoviridae/enzimología , Proteínas Virales/antagonistas & inhibidores
3.
J Biol Chem ; 296: 100486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647314

RESUMEN

Baloxavir marboxil (BXM) is an FDA-approved antiviral prodrug for the treatment of influenza A and B infection and postexposure prophylaxis. The active form, baloxavir acid (BXA), targets the cap-snatching endonuclease (PA) of the influenza virus polymerase complex. The nuclease activity delivers the primer for transcription, and previous reports have shown that BXA blocks the nuclease activity with high potency. However, biochemical studies on the mechanism of action are lacking. Structural data have shown that BXA chelates the two divalent metal ions at the active site, like inhibitors of the human immunodeficiency virus type 1 (HIV-1) integrase or ribonuclease (RNase) H. Here we studied the mechanisms underlying the high potency of BXA and how the I38T mutation confers resistance to the drug. Enzyme kinetics with the recombinant heterotrimeric enzyme (FluB-ht) revealed characteristics of a tight binding inhibitor. The apparent inhibitor constant (Kiapp) is 12 nM, while the I38T mutation increased Kiapp by ∼18-fold. Order-of-addition experiments show that a preformed complex of FluB-ht, Mg2+ ions and BXA is required to observe inhibition, which is consistent with active site binding. Conversely, a preformed complex of FluB-ht and RNA substrate prevents BXA from accessing the active site. Unlike integrase inhibitors that interact with the DNA substrate, BXA behaves like RNase H inhibitors that compete with the nucleic acid at the active site. The collective data support the conclusion that BXA is a tight binding inhibitor and the I38T mutation diminishes these properties.


Asunto(s)
Dibenzotiepinas/farmacología , Endonucleasas/antagonistas & inhibidores , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Morfolinas/farmacología , Piridonas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Dominio Catalítico , Endonucleasas/metabolismo , Humanos , Virus de la Influenza B/enzimología , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
4.
Nat Commun ; 11(1): 5597, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154358

RESUMEN

Seasonal influenza epidemics lead to 3-5 million severe infections and 290,000-650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies.


Asunto(s)
Antivirales/administración & dosificación , Antivirales/farmacología , Inmunoterapia/métodos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , 2,4-Dinitrofenol/administración & dosificación , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/inmunología , Administración Intranasal , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Antivirales/química , Línea Celular , Citotoxicidad Inmunológica/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Virus de la Influenza A/fisiología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Virus de la Influenza B/fisiología , Infusiones Parenterales , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Unión Proteica , Resultado del Tratamiento , Liberación del Virus/efectos de los fármacos , Zanamivir/administración & dosificación , Zanamivir/química , Zanamivir/farmacología
5.
PLoS Pathog ; 16(10): e1008989, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045004

RESUMEN

The influenza B virus (IBV) causes seasonal influenza and has accounted for an increasing proportion of influenza outbreaks. IBV mainly causes human infections and has not been found to spread in poultry. The replication mechanism and the determinants of interspecies transmission of IBV are largely unknown. In this study, we found that the host ANP32 proteins are required for the function of the IBV polymerase. Human ANP32A/B strongly supports IBV replication, while ANP32E has a limited role. Unlike human ANP32A/B, chicken ANP32A has low support activity to IBV polymerase because of a unique 33-amino-acid insert, which, in contrast, exhibits species specific support to avian influenza A virus (IAV) replication. Chicken ANP32B and ANP32E have even lower activity compared with human ANP32B/E due to specific amino acid substitutions at sites 129-130. We further revealed that the sites 129-130 affect the binding ability of ANP32B/E to IBV polymerase, while the 33-amino-acid insert of chicken ANP32A reduces its binding stability and affinity. Taken together, the features of avian ANP32 proteins limited their abilities to support IBV polymerase, which could prevent efficient replication of IBV in chicken cells. Our results illustrate roles of ANP32 proteins in supporting IBV replication and may help to understand the ineffective replication of IBV in birds.


Asunto(s)
Proteínas Aviares/metabolismo , Especificidad del Huésped , Virus de la Influenza B/enzimología , Gripe Aviar/virología , Gripe Humana/virología , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Proteínas Aviares/genética , Pollos , Humanos , Gripe Aviar/genética , Gripe Aviar/metabolismo , Gripe Humana/genética , Gripe Humana/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Especificidad de la Especie , Replicación Viral
6.
Influenza Other Respir Viruses ; 14(4): 436-443, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064779

RESUMEN

BACKGROUND: The novel cap-dependent endonuclease inhibitor baloxavir marboxil was approved in February 2018 for the treatment of influenza virus infection in Japan. In vitro studies have revealed that an I38T substitution in the polymerase acidic subunit (PA) is associated with reduced susceptibility of influenza viruses to baloxavir. OBJECTIVES: Development of a rapid and simple method for monitoring influenza A(H1N1)pdm09, A(H3N2), and B viruses possessing the I38T substitution in PA. METHODS: Three assays were developed based on RNase H2-dependent PCR (rhPCR) and named A/H1pdm PA_I38T rhPCR, A/H3 PA_I38T rhPCR, and B PA_I38T rhPCR. The assays were evaluated using cDNAs synthesized from in vitro-transcribed PA gene RNA controls, RNAs purified from viruses isolated in the 2017/2018 and 2018/2019 influenza seasons, and RNAs purified from clinical specimens collected in the 2018/2019 influenza season. RESULTS: The assays developed in this study accurately discriminated PA I38 and PA T38 with high sensitivity. CONCLUSIONS: Our assays should be considered a powerful tool for monitoring the emergence of baloxavir-resistant influenza viruses.


Asunto(s)
Sustitución de Aminoácidos/efectos de los fármacos , Antivirales/farmacología , Dibenzotiepinas/farmacología , Farmacorresistencia Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Morfolinas/farmacología , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/genética , Piridonas/farmacología , Triazinas/farmacología , Sustitución de Aminoácidos/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Virus de la Influenza B/genética , Gripe Humana/diagnóstico , Gripe Humana/virología , Japón , Límite de Detección , Técnicas de Diagnóstico Molecular/normas , Orthomyxoviridae/enzimología , Ribonucleasa H/genética , Sensibilidad y Especificidad
7.
Cell Microbiol ; 22(2): e13143, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31711273

RESUMEN

The innate immune system, in particular the type I interferon (IFN) response, is a powerful defence against virus infections. In turn, many if not all viruses have evolved various means to circumvent, resist, or counteract this host response to ensure efficient replication and propagation. Influenza viruses are no exception to this rule, and several viral proteins have been described to possess IFN-antagonistic functions. Although the viral nonstructural protein 1 appears to be a major antagonist in influenza A and B viruses (IAV and IBV), we have previously shown that a specific motif in the IAV polymerase proteins exerts an IFN-suppressive function very early in infection. The question remained whether a similar function would also exist in IBV polymerases. Here, we show that indeed a specific amino acid position (A523) of the PB1 protein in the IBV polymerase complex confers IFN-antagonistic properties. Mutation of this position leads to enhanced activation of the IFN-mediated signalling pathway after infection and subsequent reduction of virus titres. This indicates that inhibition of innate immune responses is a conserved activity shared by polymerase proteins of IAV and IBV.


Asunto(s)
Virus de la Influenza B , Interferón Tipo I/antagonistas & inhibidores , Proteínas de la Nucleocápside/inmunología , ARN Polimerasa Dependiente del ARN/inmunología , Proteínas Virales/inmunología , Células A549 , Animales , Chlorocebus aethiops , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Gripe Humana/virología , Células Vero
8.
Curr Top Med Chem ; 20(2): 132-139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31880262

RESUMEN

BACKGROUND: Since the influenza virus is the main cause of acute seasonal respiratory infections and pandemic outbreaks, antiviral drugs are critical to mitigate infections and impair chain of transmission. Neuraminidase inhibitors (NAIs) are the main class of anti-influenza drugs in clinical use. Nevertheless, resistance to oseltamivir (OST), the most used NAI, has been detected in circulating strains of the influenza virus. Therefore, novel compounds with anti-influenza activity are necessary. OBJECTIVE: To verify whether the NA from influenza A and B virus is susceptible to the compound 4-(4- phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl (Tritempo). METHODS: Cell-free neuraminidase inhibition assays were performed with Tritempo, using wild-type (WT) and OST-resistant influenza strains. Cell-based assays in MDCKs were performed to confirm Tritempo`s antiviral activity and cytotoxicity. Multiple passages of the influenza virus in increasing concentrations of our compound, followed by the sequencing of NA gene and molecular docking, were used to identify our Tritempo's target. RESULTS AND DISCUSSION: Indeed, Tritempo inhibited the neuraminidase activity of WT and OSTresistant strains of influenza A and B, at the nanomolar range. Tritempo bound to WT and OST-resistant influenza NA isoforms at the sialic acid binding site with low free binding energies. Cell-free assays were confirmed using a prototypic influenza A infection assay in MDCK cells, in which we found an EC50 of 0.38 µM, along with very low cytotoxicity, CC50 > 2,000 µM. When we passaged the influenza A virus in the presence of Tritempo, a mutant virus with the G248P change in the NA was detected. This mutant was resistant to Tritempo but remained sensitive to OST, indicating no cross-resistance between the studied and reference drugs. CONCLUSION: Our results suggest that Tritempo's chemical structure is a promising one for the development of novel antivirals against influenza.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Piperidinas/farmacología , Tiazoles/farmacología , Triazoles/farmacología , Antivirales/síntesis química , Antivirales/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuraminidasa/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Triazoles/síntesis química , Triazoles/química
9.
Biomed Khim ; 65(6): 520-525, 2019 Oct.
Artículo en Ruso | MEDLINE | ID: mdl-31876523

RESUMEN

The overall model for prediction of IC50 values for inhibitors of neuraminidase influenza virus A and B has been created. It combines data about IC50 values of complexes of 40 variants of neuraminidases of influenza A (7 serotypes) and B and three known inhibitors (oseltamivir, zanamivir, peramivir). The model also uses only data of enthalpy contributions to the potential energy of inhibitor/protein and substrate (MUNANA)/protein complexes. The calculation procedures are ported to use software with support of GPU accelerators, that significant decrease the computation time. The corresponding correlation coefficient (R²) for pIC50 prediction was within 0.45-0.58, the SEM values of around 0.7 (the range of used pIC50 data set is from 4.55 to 10.22).


Asunto(s)
Antivirales/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Ácidos Carbocíclicos , Ciclopentanos/química , Inhibidores Enzimáticos/química , Guanidinas/química , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Oseltamivir/química , Zanamivir/química
10.
Sci Rep ; 9(1): 17464, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767949

RESUMEN

Baloxavir marboxil (BXM), an antiviral drug for influenza virus, inhibits RNA replication by binding to RNA replication cap-dependent endonuclease (CEN) of influenza A and B viruses. Although this drug was only approved by the FDA in October 2018, drug resistant viruses have already been detected from clinical trials owing to an I38 mutation of CEN. To investigate the reduction of drug sensitivity by the I38 mutant variants, we performed a molecular dynamics (MD) simulation on the CEN-BXM complex structure to analyze variations in the mode of interaction. Our simulation results suggest that the side chain methyl group of I38 in CEN engages in a CH-pi interaction with the aromatic ring of BXM. This interaction is abolished in various I38 mutant variants. Moreover, MD simulation on various mutation models and binding free energy prediction by MM/GBSA method suggest that the I38 mutation precludes any interaction with the aromatic ring of BXA and thereby reduces BXA sensitivity.


Asunto(s)
Sustitución de Aminoácidos , Antivirales/farmacología , Farmacorresistencia Viral/genética , Endorribonucleasas/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Oxazinas/farmacología , Piridinas/farmacología , Tiepinas/farmacología , Triazinas/farmacología , Proteínas Virales/efectos de los fármacos , Sitios de Unión , Dibenzotiepinas , Endorribonucleasas/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Morfolinas , Mutación , Unión Proteica , Conformación Proteica , Piridonas , Relación Estructura-Actividad , Termodinámica , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
11.
Science ; 366(6464): 499-504, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31649200

RESUMEN

Better vaccines against influenza virus are urgently needed to provide broader protection against diverse strains, subtypes, and types. Such efforts are assisted by the identification of novel broadly neutralizing epitopes targeted by protective antibodies. Influenza vaccine development has largely focused on the hemagglutinin, but the other major surface antigen, the neuraminidase, has reemerged as a potential target for universal vaccines. We describe three human monoclonal antibodies isolated from an H3N2-infected donor that bind with exceptional breadth to multiple different influenza A and B virus neuraminidases. These antibodies neutralize the virus, mediate effector functions, are broadly protective in vivo, and inhibit neuraminidase activity by directly binding to the active site. Structural and functional characterization of these antibodies will inform the development of neuraminidase-based universal vaccines against influenza virus.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Adulto , Animales , Dominio Catalítico , Línea Celular , Epítopos/inmunología , Femenino , Humanos , Inmunización Pasiva , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Vacunas contra la Influenza , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Pruebas de Neutralización , Estructura Cuaternaria de Proteína
12.
Phytomedicine ; 64: 152904, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31454654

RESUMEN

BACKGROUND: Millions of people are infected by the influenza virus worldwide every year. Current selections of anti-influenza agents are limited and their effectiveness and drug resistance are still of concern. PURPOSE: Investigation on in vitro and in vivo effect of aloin from Aloe vera leaves against influenza virus infection. METHODS: In vitro antiviral property of aloin was measured by plaque reduction assay in which MDCK cells were infected with oseltamivir-sensitive A(H1N1)pdm09, oseltamivir-resistant A(H1N1)pdm09, H1N1 or H3N2 influenza A or with influenza B viruses in the presence of aloin. In vivo activity was tested in H1N1 influenza virus infected mice. Aloin-mediated inhibition of influenza neuraminidase activity was tested by MUNANA assay. Aloin treatment-mediated modulation of anti-influenza immunity was tested by the study of hemagglutinin-specific T cells in vivo. RESULTS: Aloin significantly reduced in vitro infection by all the tested strains of influenza viruses, including oseltamivir-resistant A(H1N1)pdm09 influenza viruses, with an average IC50 value 91.83 ± 18.97 µM. In H1N1 influenza virus infected mice, aloin treatment (intraperitoneal, once daily for 5 days) reduced virus load in the lungs and attenuated body weight loss and mortality. Adjuvant aloin treatment also improved the outcome with delayed oseltamivir treatment. Aloin inhibited viral neuraminidase and impeded neuraminidase-mediated TGF-ß activation. Viral neuraminidase mediated immune suppression with TGF-ß was constrained and influenza hemagglutinin-specific T cell immunity was increased. There was more infiltration of hemagglutinin-specific CD4+ and CD8+ T cells in the lungs and their production of effector cytokines IFN-γ and TNF-α was boosted. CONCLUSION: Aloin from Aloe vera leaves is a potent anti-influenza compound that inhibits viral neuraminidase activity, even of the oseltamivir-resistant influenza virus. With suppression of this virus machinery, aloin boosts host immunity with augmented hemagglutinin-specific T cell response to the infection. In addition, in the context of compromised benefit with delayed oseltamivir treatment, adjuvant aloin treatment ameliorates the disease and improves survival. Taken together, aloin has the potential to be further evaluated for clinical applications in human influenza.


Asunto(s)
Aloe/química , Antivirales/farmacología , Emodina/análogos & derivados , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Neuraminidasa/antagonistas & inhibidores , Animales , Línea Celular , Farmacorresistencia Viral , Emodina/farmacología , Hemaglutininas/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oseltamivir/farmacología , Hojas de la Planta/química , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Proteínas Virales/antagonistas & inhibidores
13.
ACS Chem Biol ; 14(6): 1195-1204, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31120724

RESUMEN

Sialidases are widely distributed in nature and are involved in many physiological and pathological processes. Sialidases are expressed and work in various tissues and organelles. Clarification of the localization of sialidases is very helpful as a way to understand their functions. We previously developed a novel fluorogenic probe for sialidases, BTP3-Neu5Ac, that visualized the localization of sialidase activity in live cells and tissues by precipitating the hydrophobic fluorescent compound; however, for the purpose of accurate fluorescence imaging of sialidase-expressing cells or the distribution of intracellular sialidase activity, BTP3-Neu5Ac was inadequate in imaging performance. We report the design and development of a sialidase imaging probe that improves the sensitivity and accuracy of in situ fluorescence imaging performance as well as increases the hydrophobicity by attaching linear unsaturated hydrocarbon chains into the hydrophobic fluorescent compound of BTP3-Neu5Ac. The newly developed probe showed low diffusivity and high brightness for fluorescence imaging, and it enabled sensitive and highly accurate imaging of viral sialidase in virus-infected cells and sialidase-expressing cells as well as mammalian sialidase in the rat brain. The probe also enabled the fluorescence imaging of intracellular viral sialidase in live-virus-infected cells. The newly developed probe is expected to be a useful tool that will contribute to the progress of research on sialidases in various fields such as research on viruses and brains.


Asunto(s)
Colorantes Fluorescentes/química , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Neuraminidasa/metabolismo , Animales , Encéfalo/enzimología , Células COS , Línea Celular , Chlorocebus aethiops , Perros , Hidrocarburos/química , Células de Riñón Canino Madin Darby , Masculino , Mamíferos , Imagen Óptica/métodos , Ratas , Ratas Wistar
14.
Emerg Infect Dis ; 25(4): 838-840, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30882323
15.
Antiviral Res ; 164: 91-96, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771405

RESUMEN

Baloxavir Marboxil (BXM) is an influenza polymerase inhibitor antiviral that binds to the endonuclease region in the PA subunit of influenza A and B viruses. To establish the baseline susceptibility of viruses circulating prior to licensure of BXM and to monitor for susceptibility post-BXM use, a cell culture-based focus reduction assay was developed to determine the susceptibility of 286 circulating seasonal influenza viruses, A(H1N1)pdm09, A(H3N2), B (Yamagata/Victoria) lineage viruses, including neuraminidase inhibitor (NAI) resistant viruses, to Baloxavir Acid (BXA), the active metabolic form of BXM. BXA was effective against all influenza subtypes tested with mean EC50 values (minimum-maximum) of 0.7 ±â€¯0.5 nM (0.1-2.1 nM), 1.2 ±â€¯0.6 nM (0.1-2.4), 7.2 ±â€¯3.5 nM (0.7-14.8), and 5.8 ±â€¯4.5 nM (1.8-15.5) obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses, respectively. Using reverse genetics, amino acid substitutions known to alter BXA susceptibility were introduced into the PA protein resulting in EC50 fold change increases that ranged from 2 to 65. Our study demonstrates that currently circulating viruses are susceptible to BXA and that the newly developed focus reduction assay is well suited to susceptibility monitoring in reference laboratories.


Asunto(s)
Antivirales/farmacología , Orthomyxoviridae/efectos de los fármacos , Oxazinas/farmacología , Piridinas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Tiepinas/farmacología , Triazinas/farmacología , Proteínas Virales/antagonistas & inhibidores , Dibenzotiepinas , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/enzimología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Morfolinas , Orthomyxoviridae/enzimología , Piridonas
16.
Influenza Other Respir Viruses ; 13(2): 123-132, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29989680

RESUMEN

BACKGROUND: The relative ability of neuraminidase inhibitors (NAIs) to reduce household influenza transmission when given to index patients is not established. OBJECTIVES: To compare daily secondary infection rates (SIR) of influenza A (A/H1pdm and A/H3) and B in households of index patients treated with oseltamivir, zanamivir, laninamivir, or peramivir. PATIENTS/METHODS: This Japanese, single-center, prospective, observational study (UMIN-CTR: UMIN000024650) enrolled index patients with confirmed influenza who were treated with an NAI during 6 influenza seasons (2010-2016). Secondary infection patients were household members diagnosed with the same influenza subtype 1-7 days after onset in the index patient. Daily SIR was calculated using a modified Reed-Frost model. The rate of household members with secondary infection and proportion of households with any secondary infection were also calculated. RESULTS: Index patients with influenza A (n = 1146) or B (n = 661) were enrolled (~3400 total index and secondary patients). Daily SIR for all virus subtypes was highest when oseltamivir was used (eg, unadjusted estimate: type A, 1.47% vs 0.71%-1.13%; type B, 1.30% vs 0.59%-0.88%). Pairwise comparisons revealed significant differences in daily SIR between NAIs for influenza type A, type B, and subtype A/H3; for example, for type A, SIR was significantly higher with oseltamivir than with peramivir or zanamivir. The rate of household members with secondary infection and proportion of households with any secondary infection also varied between NAIs. CONCLUSIONS: Neuraminidase inhibitors differed in their ability to reduce household influenza transmission; transmission was highest with oseltamivir. Physicians may consider effects on household transmission when deciding which NAI to prescribe.


Asunto(s)
Antivirales/uso terapéutico , Coinfección/diagnóstico , Inhibidores Enzimáticos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/transmisión , Neuraminidasa/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Coinfección/virología , Composición Familiar , Femenino , Humanos , Lactante , Recién Nacido , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Gripe Humana/virología , Japón , Masculino , Persona de Mediana Edad , Oseltamivir/uso terapéutico , Estudios Prospectivos , Adulto Joven
17.
Curr Med Chem ; 26(13): 2243-2263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29984646

RESUMEN

Influenza viruses are severe human pathogens that pose persistent threat to public health. Each year more people die of influenza virus infection than that of breast cancer. Due to the limited efficacy associated with current influenza vaccines, as well as emerging drug resistance from small molecule antiviral drugs, there is a clear need to develop new antivirals with novel mechanisms of action. The influenza virus polymerase complex has become a promising target for the development of the next-generation of antivirals for several reasons. Firstly, the influenza virus polymerase, which forms a heterotrimeric complex that consists of PA, PB1, and PB2 subunits, is highly conserved. Secondly, both individual polymerase subunit (PA, PB1, and PB2) and inter-subunit interactions (PA-PB1, PB1- PB2) represent promising drug targets. Lastly, growing insight into the structure and function of the polymerase complex has spearheaded the structure-guided design of new polymerase inhibitors. In this review, we highlight recent progress in drug discovery and assay development targeting the influenza virus polymerase complex and discuss their therapeutic potentials.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Animales , Antivirales/farmacología , Descubrimiento de Drogas , Endonucleasas/antagonistas & inhibidores , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/fisiología , Virus de la Influenza B/clasificación , Virus de la Influenza B/fisiología , Gripe Humana/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Unión Proteica , Dominios Proteicos , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
18.
J Gen Virol ; 99(12): 1608-1613, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30394870

RESUMEN

Influenza A and B virions are packaged with their polymerases to catalyse RNA-dependent RNA polymerase activity. Since there is no evidence to rule in or out the permissiveness of influenza virions to triphosphate ribonucleotides, we functionally evaluated this. We found the means to stimulate influenza A and B RNA polymerase activity inside the virion, called natural endogenous RNA polymerase (NERP) activity. Stimulation of NERP activity increased up to 3 log10 viral RNA content, allowing the detection of influenza virus in otherwise undetectable clinical samples. NERP activation also improved our capacity to sequence misidentified regions of the influenza genome from clinical samples. By treating the samples with the ribavirin triphosphate we inhibited NERP activity, which confirms our hypothesis and highlights that this assay could be used to screen antiviral drugs. Altogether, our data show that NERP activity could be explored to increase molecular diagnostic sensitivity and/or to develop antiviral screening assays.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/análisis , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Virión/enzimología , Antivirales/metabolismo , Inhibidores Enzimáticos/metabolismo , ARN Viral/biosíntesis , Ribavirina/metabolismo , Ribonucleótidos/metabolismo , Ensamble de Virus
19.
Antiviral Res ; 160: 109-117, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30316915

RESUMEN

Cap-dependent endonuclease (CEN) resides in the PA subunit of the influenza virus and mediates the critical "cap-snatching" step of viral RNA transcription, which is considered to be a promising anti-influenza target. Here, we describe in vitro characterization of a novel CEN inhibitor, baloxavir acid (BXA), the active form of baloxavir marboxil (BXM). BXA inhibits viral RNA transcription via selective inhibition of CEN activity in enzymatic assays, and inhibits viral replication in infected cells without cytotoxicity in cytopathic effect assays. The antiviral activity of BXA is also confirmed in yield reduction assays with seasonal type A and B viruses, including neuraminidase inhibitor-resistant strains. Furthermore, BXA shows broad potency against various subtypes of influenza A viruses (H1N2, H5N1, H5N2, H5N6, H7N9 and H9N2). Additionally, serial passages of the viruses in the presence of BXA result in isolation of PA/I38T variants with reduced BXA susceptibility. Phenotypic and genotypic analyses with reverse genetics demonstrate the mechanism of BXA action via CEN inhibition in infected cells. These results reveal the in vitro characteristics of BXA and support clinical use of BXM to treat influenza.


Asunto(s)
Antivirales/farmacología , Endonucleasas/antagonistas & inhibidores , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Oxazinas/farmacología , Piridinas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Tiepinas/farmacología , Triazinas/farmacología , Proteínas Virales/antagonistas & inhibidores , Efecto Citopatogénico Viral , Análisis Mutacional de ADN , Dibenzotiepinas , Farmacorresistencia Viral , Endonucleasas/genética , Virus de la Influenza A/enzimología , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza B/enzimología , Virus de la Influenza B/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Morfolinas , Mutación Missense , Piridonas , ARN Polimerasa Dependiente del ARN/genética , Genética Inversa , Pase Seriado , Transcripción Genética/efectos de los fármacos , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
20.
Drug Des Devel Ther ; 12: 3431-3437, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349196

RESUMEN

The demand for novel anti-influenza drugs persists, which is highlighted by the recent pandemics of influenza affecting thousands of people across the globe. One of the approaches to block the virus spreading is inhibiting viral sialidase (neuraminidase). This enzyme cleaves the sialic acid link between the newly formed virions and the host cell surface liberating the virions from the cell and maintaining the cycle of infection. Viral neuraminidases appear therefore as attractive therapeutic targets for preventing further spread of influenza infection. Compared to ion channel blockers that were the first approved anti-influenza drugs, neuraminidase inhibitors are well tolerated and target both influenza A and B viruses. Moreover, neuraminidase/sialidase inhibitors may be useful for managing some other human pathologies, such as cancer. In this review, we discuss the available knowledge on neuraminidase or sialidase inhibitors, their design, clinical application, and the current challenges.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Neuraminidasa/antagonistas & inhibidores , Animales , Antivirales/química , Inhibidores Enzimáticos/química , Humanos , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Neuraminidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...